Abstract

Complete descriptions of the Lie symmetries of a class of nonlinear reaction-diffusion equations with gradient-dependent diffusivity in one and two space dimensions are obtained. A surprisingly rich set of Lie symmetry algebras depending on the form of diffusivity and source (sink) in the equations is derived. It is established that there exists a subclass in 1-D space admitting an infinite-dimensional Lie algebra of invariance so that it is linearisable. A special power-law diffusivity with a fixed exponent, which leads to wider Lie invariance of the equations in question in 2-D space, is also derived. However, it is shown that the diffusion equation without a source term (which often arises in applications and is sometimes called the Perona–Malik equation) possesses no rich variety of Lie symmetries depending on the form of gradient-dependent diffusivity. The results of the Lie symmetry classification for the reduction to lower dimensionality, and a search for exact solutions of the nonlinear 2-D equation with power-law diffusivity, also are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.