Abstract

Extending the theory of systems, we introduce a theory of Lie semialgebra ``pairs'' which parallels the classical theory of Lie algebras, but with a ``null set'' replacing $0$. A selection of examples is given. These Lie pairs comprise two categories in addition to the universal algebraic definition, one with ``weak Lie morphisms'' preserving null sums, and the other with ``$\preceq$-morphisms'' preserving a surpassing relation $\preceq$ that replaces equality. We provide versions of the PBW (Poincare-Birkhoff-Witt) Theorem in these three categories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.