Abstract
We find an interpretation of the complex of variational calculus in terms of the Lie conformal algebra cohomology theory. This leads to a better understanding of both theories. In particular, we give an explicit construction of the Lie conformal algebra cohomology complex, and endow it with a structure of a g-complex. On the other hand, we give an explicit construction of the complex of variational calculus in terms of skew-symmetric poly-differential operators.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have