Abstract
We discuss the notion of characteristic Lie algebra of a hyperbolic PDE. The integrability of a hyperbolic PDE is closely related to the properties of the corresponding characteristic Lie algebra χ. We establish two explicit isomorphisms: Hence the Lie algebras $\chi (\sinh {u})$ and χ(eu + e− 2u) are slowly linearly growing Lie algebras with average growth rates $\frac {3}{2}$ and $\frac {4}{3}$ respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.