Abstract

We give a full description of the Lie algebra generated by locally nilpotent derivations (short LNDs) on smooth Danielewski surfaces Dp given by xy=p(z) . In case deg(p)≥3 it turns out to be not the whole Lie algebra VF ω alg (Dp) of volume preserving algebraic vector fields, thus answering a question posed by Lind and the first author. Also we show algebraic volume density property (short AVDP) for a certain homology plane, a homogeneous space of the form SL₂ (C)/N , where N is the normalizer of the maximal torus and another related example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.