Abstract

Smart wearable technologies such as fitness trackers are creating many new opportunities to improve the quality of life for everyone. It is usually impossible for visually impaired people to orientate themselves in large spaces and navigate an unfamiliar area without external assistance. The design space for assistive technologies for the visually impaired is complex, involving many design parameters including reliability, transparent object detection, handsfree operations, high-speed real-time operations, low battery usage, low computation and memory requirements, ensuring that it is lightweight, and price affordability. State-of-the-art visually impaired devices lack maturity, and they do not fully meet user satisfaction, thus more effort is required to bring innovation to this field. In this work, we develop a pair of smart glasses called LidSonic that uses machine learning, LiDAR, and ultrasonic sensors to identify obstacles. The LidSonic system comprises an Arduino Uno device located in the smart glasses and a smartphone app that communicates data using Bluetooth. Arduino collects data, manages the sensors on smart glasses, detects objects using simple data processing, and provides buzzer warnings to visually impaired users. The smartphone app receives data from Arduino, detects and identifies objects in the spatial environment, and provides verbal feedback about the object to the user. Compared to image processing-based glasses, LidSonic requires much less processing time and energy to classify objects using simple LiDAR data containing 45-integer readings. We provide a detailed description of the system hardware and software design, and its evaluation using nine machine learning algorithms. The data for the training and validation of machine learning models are collected from real spatial environments. We developed the complete LidSonic system using off-the-shelf inexpensive sensors and a microcontroller board costing less than USD 80. The intention is to provide a design of an inexpensive, miniature, green device that can be built into, or mounted on, any pair of glasses or even a wheelchair to help the visually impaired. This work is expected to open new directions for smart glasses design using open software tools and off-the-shelf hardware.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call