Abstract

LIDAR systems have widely been used for remote investigation of atmospheric parameters (Measures, 1984; Kovalev & Eichinger, 2004; Weitkamp, 2005). They are based on the socalled LIDAR (LIght Detection And Ranging) principle which consists in sending a laser pulse to the atmosphere and subsequent detecting of the radiation backscattered (at angle π) by atmospheric constituents or pollutants. As LIDAR is a time-of-flight technique, the return signal profile detected in the time domain contains range-resolved information about the atmospheric characteristics along the line of laser beam propagation. Advantages of the lidar measurement approaches, as compared to other available active techniques (e.g. radars), are the high spatial and temporal resolution, higher sensitivity and accuracy in sensing atmospheric particles, covering large observation areas, etc. These features make lidar systems powerful instruments for environmental measurements. At present, lidars find a variety of applications in different fields of the human activity. Along with the meteorology, atmospheric physics, and ecological monitoring, lidars are extensively used for volcanic and fire alerting, laser ranging, altimetry and bathymetry, lidar mapping and forestry, coastal morphology and hazards assessment in geology, as well as for many other applications in physics and astronomy, nuclear fusion, military, aviation, robotics, transportation, etc. There exists a variety of ground-based, air-borne and space-borne lidar systems distinguished by their types, schematics, regimes of operation, monitored parameters, constructions, etc. (Kovalev & Eichinger, 2004; Weitkamp, 2005). Among the most widely used systems are the oneor multi-wavelength aerosol lidars exploiting elastic scattering of light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call