Abstract

Lidar based wind measurement is an integral part of wind farm control. The major issues and challenges in power maximization include the potential losses due to wake effect observed among wind turbines. This manuscript presents a wake management technique that utilizes lidar simulations for wake redirection. The proposed methodology is validated for 2-turbine and 15-turbine wind farm layouts involving a PI control based yaw angle correction. Yaw angle misalignment using wake center tracking of the upstream turbines is used to increase the power generation levels. Results of wake center estimation are compared with a Kalman filter based method. Further, the velocity deficit and overall farm power improvement by yaw angle correction is calculated. Results reveal a 1.7% and 0.675% increase in total wind farm power for two different wind speed cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.