Abstract

Many members of the neuronal calcium sensor (NCS) protein family have a striking coexistence of two characteristics, that is, N-myristoylation and the cryptic EF-1 motif. We investigated the rationale behind this correlation in neuronal calcium sensor-1 (NCS-1) by restoring Ca(2+) binding ability of the disabled EF-1 loop by appropriate mutations. The concurrence of canonical EF-1 and N-myristoylation considerably decreased the overall Ca(2+) affinity, conformational flexibility, and functional activation of downstream effecter molecules (i.e., PI4Kβ). Of a particular note, Ca(2+) induced conformational change (which is the first premise for a CaBP to be considered as sensor) is considerably reduced in myristoylated proteins in which Ca(2+)-binding to EF-1 is restored. Moreover, Ca(2+), which otherwise augments the enzymatic activity of PI4Kβ (modulated by NCS-1), leads to a further decline in the modulated PI4Kβ activity by myristoylated mutants (with canonical EF-1) pointing toward a loss of Ca(2+) signaling and specificity at the structural as well as functional levels. This study establishes the presence of the strong liaison between myristoylation and cryptic EF-1 in NCS-1. Breaking this liaison results in the failure of Ca(2+) specific signal transduction to downstream effecter molecules despite Ca(2+) binding. Thus, the EF-1 disability is a prerequisite in order to append myristoylation signaling while preserving structural robustness and Ca(2+) sensitivity/specificity in NCS-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.