Abstract
Motivated by the rich interplay among electronic correlation, spin-orbit coupling (SOC), crystal-field splitting, and geometric frustrations in the honeycomb-like lattice, we systematically investigated the electronic and magnetic properties of Li$_2$RhO$_3$. The material is semiconducting with a narrow band gap of $\Delta\sim$78 meV, and its temperature dependence of resistivity conforms to 3D variable range hopping mechanism. No long-range magnetic ordering was found down to 0.5 K, due to the geometric frustrations. Instead, single atomic spin-glass behavior below the spin-freezing temperature ($\sim$6 K) was observed and its spin dynamics obeys the universal critical slowing down scaling law. First principle calculations suggested it to be a relativistic Mott insulator mediated by both electronic correlation and SOC. With moderate strength of electronic correlation and SOC, our results shed new light to the research of Heisenberg-Kitaev model in realistic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.