Abstract

In the new era of the Internet of Things (IoT), all information related to the environment, things and humans is connected to networks. Humans, too, can be considered an integral part of the IoT ecosystem. The growing human-centricity of IoT applications raises the need greater dynamicity, heterogeneity, and scalability in future IoT systems. Recently, the IoT and cloud computing have both evolved as emerging technologies and have already become part of our daily life. The complementary features of the IoT and cloud are forming a new IT paradigm to meet current and future requirements. Due to the increased demand for and volume of IoT data, it has become a critical challenge to transfer data from the edge of the network to computing data centers due to the limitations of network bandwidth and higher latency delay. The emergence of the new paradigm of computing in the cloud computing architecture has made it necessary to overcome the inherent limitations of cloud computing, such as location awareness, scalability, energy efficiency, mobility, bandwidth bottlenecks, and latency delay. To address these issues, this paper proposes an efficient hybrid cloud architecture framework coupled with Li-Fi communication for a human-centric IoT network. It also introduces the architecture of the local cloud to reduce the latency delay and bandwidth cost and to improve efficiency, security, reliability and availability. Finally, the paper discusses the communication modulation schemes in the Li-Fi technique and presents scenarios involving the application of the proposed model in the real world.

Highlights

  • In view of the ever increasing range of applications of the Internet of Things (IoT), it is essential that humans and things work together more effectively

  • The rest of the paper is structured as follows: “Related works” section introduces the points of interest of the Li-Fi technique, the challenges of the existing cloud computing architecture, and existing research; “Proposed hybrid cloud architecture” section presents a novel efficient hybrid cloud architecture coupled with Li-Fi communication for a humancentric IoT network; “Case study of the proposed model and discussion” section discusses use case scenarios of the proposed model in the real world

  • We propose to use the Li-Fi communication medium to communicate between IoT devices and local cloud nodes

Read more

Summary

Introduction

In view of the ever increasing range of applications of the Internet of Things (IoT), it is essential that humans and things work together more effectively. In the wireless domain, a system of this complexity is not feasible due to the limitations of bandwidth, computing, and energy resources Apart from these issues, in the case of time-sensitive applications such as real-time analysis, emergency services, and human–machine interactions, unpredictable delays could ruin the user experience. The rest of the paper is structured as follows: “Related works” section introduces the points of interest of the Li-Fi technique, the challenges of the existing cloud computing architecture, and existing research; “Proposed hybrid cloud architecture” section presents a novel efficient hybrid cloud architecture coupled with Li-Fi communication for a humancentric IoT network; “Case study of the proposed model and discussion” section discusses use case scenarios of the proposed model in the real world

Related works
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.