Abstract

Binary content-addressable memory (BiCAM) is a popular high speed search engine in hardware, which provides output typically in one clock cycle. But speed of CAM comes at the cost of various disadvantages, such as high latency, low storage density, and low architectural scalability. In addition, field-programmable gate arrays (FPGAs), which are used in many applications because of its advantages, do not have hard IPs for CAM. Since FPGAs have embedded IPs for random-access memories (RAMs), several RAM-based CAM architectures on FPGAs are available in the literature. However, these architectures are especially targeted for ternary CAMs, not for BiCAMs; thus, the available RAM-based CAMs may not be fully beneficial for BiCAMs in terms of architectural design. Since modern FPGAs are enriched with logical resources, why not to configure them to design BiCAM on FPGA? This letter presents a logic-based high performance BiCAM architecture (LH-CAM) using Xilinx FPGA. The proposed CAM is composed of CAM words and associated comparators. A sample of LH-CAM of size ${64\times 36}$ is implemented on Xilinx Virtex-6 FPGA. Compared with the latest prior work, the proposed CAM is much simpler in architecture, storage efficient, reduces power consumption by 40.92%, and improves speed by 27.34%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.