Abstract

Standard theories of expected utility require that preferences are complete, and/or Archimedean. We present in this paper a theory of decision under uncertainty for both incomplete and non-Archimedean preferences. Without continuity assumptions, incomplete preferences on a lottery space reduce to an order-extension problem. It is well known that incomplete preferences can be extended to complete preferences in the full generality, but this result does not necessarily hold for incomplete preferences which satisfy the independence axiom, since it may obviously happen that the extension does not satisfy the independence axiom. We show, for incomplete preferences on a mixture space, that an extension which satisfies the independence axiom exists. We find necessary and sufficient conditions for a preorder on a finite lottery space to be representable by a family of lexicographic von Neumann–Morgenstern Expected Utility functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.