Abstract

For incomplete preference relations that are represented by multiple priors and/or multiple -- possibly multivariate -- utility functions, we define a certainty equivalent as well as the utility buy and sell prices and indifference price bounds as set-valued functions of the claim. Furthermore, we motivate and introduce the notion of a weak and a strong certainty equivalent. We will show that our definitions contain as special cases some definitions found in the literature so far on complete or special incomplete preferences. We prove monotonicity and convexity properties of utility buy and sell prices that hold in total analogy to the properties of the scalar indifference prices for complete preferences. We show how the (weak and strong) set-valued certainty equivalent as well as the indifference price bounds can be computed or approximated by solving convex vector optimization problems. Numerical examples and their economic interpretations are given for the univariate as well as for the multivariate case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.