Abstract

This paper presents a new approach to building legal citation classification systems. Our approach is based on Ripple-down Rules (RDR), an efficient knowledge acquisition methodology. The main contributions of the paper (over existing expert-systems approaches) are extensions to the traditional RDR approach introducing new automatic methods to assist in the creation of rules: using the available dataset to provide performance estimates and relevant examples, automatically suggesting and validating synonyms, re-using exceptions in different portions of the knowledge base. We compare our system LEXA with baseline machine learning techniques. LEXA obtains better results both in clean and noisy subsets of our corpus. Compared to machine learning approaches, LEXA also has other advantages such as supporting continuous extension of the rule base, and the opportunity to proceed without an annotated data set and to validate class labels while building rules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.