Abstract

Variation in natural gas composition, alongside the potential for H2 enrichment, creates the potential for significant changes to premixed flame behaviour. To strengthen fundamental understanding of lean multi-component alternative fuel blends, an outwardly propagating spherical flame was employed to measure the flame speeds and Markstein lengths of C1C4 hydrocarbons, alongside precisely mixed blends of CH4/C2H6, CH4/C3H8 and CH4/H2. Theoretical relationships between Markstein length and Lewis Number are explored alongside effective Lewis number formulations. Under lean conditions, equal volumetric additions of H2 and C3H8 (30% vol.) to CH4 resulted in similar augmentation of burning velocity, however, opposite susceptibility to preferential diffusional instability was noted. At a fixed equivalence ratio of 0.65, limited changes in composition provide a marked change in the premixed flame response with the addition of C2H6 and C3H8 to CH4. For lean CH4/H2 mixtures, a diffusional based Lewis Number formulation yielded a favourable correlation, whilst a heat-release model resulted in better agreement for lean CH4/C3H8 blends. Modelling work suggests that measured enhancement of lean CH4 flames upon H2 or C3H8 is strongly correlated to changes in volumetric heat release rates and production of H radicals. Furthermore, a systematic analysis of the flame speed enhancement effects (thermal, kinetic, diffusive) of H2 and C3H8 addition to methane was undertaken. Augmented flame propagation of CH4/H2 and CH4/C3H8 was demonstrated to be principally an Arrhenius effect, predominantly through reduction of associated activation energy. Finally, plausible short-term variations in composition with hydrogen-enriched multi-component natural gas flames were investigated experimentally and numerically. At the leanest conditions, small variations in CH4:C3H8 content at a fixed H2 fraction resulted in discernible changes in stretch related behaviour, a reflection of the thermo-diffusive behaviour of each fuel's response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.