Abstract

The characterization of premixed flames by a flame speed has been a subject that has occupied much interest in the literature in many systematic studies on combustion phenomena. Consumption and displacement speeds are two such flame speeds that are understood to describe the flame dynamics under the effect of flame curvature, flow non-uniformities, Lewis number and turbulence effects along with heat transfer with flame holders and cold walls. As such, much work has been done in the past where either one of these two speeds has been employed along with a linear sensitivity coefficient (Markstein length) for describing different sensitivities to stretch effects. However, despite recent attempts using the asymptotic theory, the relationship between these two quantities has only been clarified in a limited manner for flames of finite thickness. In this study, we use flame stretch theory that takes into account changes of stretch, curvature, heat transfer and Lewis number effects throughout the pre-heat zone and its integral effect on the flame reaction zone. A sound mathematical and physical basis is provided for understanding the two speeds that is valid for weak as well as strong stretch effects. Understanding from theory is further demonstrated by analysing several example 1D stretched flames along with a 2D bluff body flame near extinction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.