Abstract
Levodopa-induced dyskinesia (LID) is a common complication of Parkinson's disease (PD) therapy. Nitric oxide in the central nervous system may have a role in its pathophysiology. The present work investigates plasma and CSF levels of nitric oxide metabolites nitrite and nitrate in patients with PD, LID, and healthy control. We measured plasma and CSF nitrite and nitrate levels in patients with PD with and without LID and in healthy controls. The levels of plasma and CSF nitrite and nitrate were measured by ozone-based chemiluminescence. Sixty-seven participants were enrolled. CSF nitrite levels in patients with PD and LID were higher than in patients with PD without LID and healthy controls. CSF/plasma ratio of nitrite was higher in patients with PD and LID than in patients with PD without LID. The CSF/plasma ratio of nitrite in patients with PD and LID was higher than 1, indicating an intrathecal production of NO in patients with this motor complication. There was an increase in nitrate levels of CSF and CSF/plasma ratio of nitrate in patients with PD and LID compared to the healthy controls. Sex, age at evaluation, disease duration, and levodopa equivalent daily doses, as well as processing and storage time, did not critically influence these results. The present study demonstrated an increase in nitrite and nitrate levels in the central nervous system of patients with PD and LID. This finding strengthens the role of NO on LID pathophysiology.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.