Abstract

Spintronic domain wall memories (DWMs) are prone to alignment faults, which cannot be protected by traditional error correction techniques. To solve this problem, we propose a new technique called derived error correction coding (DECC). We construct metadata from the data and shift state of the DWM, on demand, using a novel transverse read (TR). TR reads in an orthogonal direction to the DWM access point and can determine the number of ones in a DWM. Errors in the metadata correspond to shift-faults in the DWM. Rather than storing the metadata, it is created on-demand and protected by storing parity bits. Repairing the metadata with ECC allows restoration of DWM alignment and ensures correct operation. Through these techniques, our shift-aware error correction approaches provide a lifetime of over 15 years with a similar performance, while reducing area and energy by 370% and 52%, versus the state-of-the-art, for a 32-bit nanowire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.