Abstract

AbstractPurifying olefin from ternary paraffin/olefin/alkyne mixtures through a one‐step adsorption process is extremely desirable. Herein, a stable zirconium(IV) metal‐organic framework with a customized pore surface composed of nonpolar phenyl and slightly polar thiophene rings is reported to access the adsorption preference of paraffin and alkyne over olefin. Noteworthily, this material displays a superior ability to discriminate C3 hydrocarbon molecules, which is principally more challenging compared with C2 ones and rarely documented. Computational studies disclose that its featured pore shape fits well with C3 gas molecules, enabling them to get close contact with the immobilized affinity sites. Leveraging surface chemistry and pore shape engineering synergistically gives rise to excellent C3 adsorption capacities (>5 mmol g−1) and concurrently high C3H8/C3H6 (1.4) and C3H4/C3H6 (1.9) selectivities (at 298 K and 1 atm). Dynamic column breakthrough experiments demonstrate that one‐step purification of C2H4 and C3H6 can be simultaneously realized on this material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call