Abstract
Diabetes, a significant global health crisis, is primarily driven in India by unhealthy diets and sedentary lifestyles, with rapid urbanization amplifying these effects through convenience-oriented living and limited physical activity opportunities, underscoring the need for advanced preventative strategies and technology for effective management. This study integrates Shapley Additive explanations (SHAPs) into ensemble machine learning models to improve the accuracy and efficiency of diabetes predictions. By identifying the most influential features using SHAP, this study examined their role in maintaining high predictive performance while minimizing computational demands. The impact of feature selection on model accuracy was assessed across ten models using three feature sets: all features, the top three influential features, and all except these top three. Models focusing on the top three features achieved superior performance, with the ensemble model attaining a better performance in most of the metrics, outperforming comparable approaches. Notably, excluding these features led to a significant decline in performance, reinforcing their critical influence. These findings validate the effectiveness of targeted feature selection for efficient and robust clinical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have