Abstract
Missing hierarchical is-a relations and missing concepts are common quality issues in biomedical ontologies. Non-lattice subgraphs have been extensively studied for automatically identifying missing is-a relations in biomedical ontologies like SNOMED CT. However, little is known about non-lattice subgraphs' capability to uncover new or missing concepts in biomedical ontologies. In this work, we investigate a lexical-based intersection approach based on non-lattice subgraphs to identify potential missing concepts in SNOMED CT. We first construct lexical features of concepts using their fully specified names. Then we generate hierarchically unrelated concept pairs in non-lattice subgraphs as the candidates to derive new concepts. For each candidate pair of concepts, we conduct an order-preserving intersection based on the two concepts' lexical features, with the intersection result serving as the potential new concept name suggested. We further perform automatic validation through terminologies in the Unified Medical Language System (UMLS) and literature in PubMed. Applying this approach to the March 2021 release of SNOMED CT US Edition, we obtained 7,702 potential missing concepts, among which 1,288 were validated through UMLS and 1,309 were validated through PubMed. The results showed that non-lattice subgraphs have the potential to facilitate suggestion of new concepts for SNOMED CT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. IEEE International Conference on Bioinformatics and Biomedicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.