Abstract

This paper presents a machine learning-based prediction for dementia, leveraging transfer learning to reuse the knowledge learned from prediction of mild cognitive impairment, a precursor of dementia. We also examine the impacts of temporal aspects of longitudinal data and sex differences. The methodology encompasses key components such as setting the duration window, comparing different modeling strategies, conducting comprehensive evaluations, and examining the sex-specific impacts of simulated scenarios. The findings reveal that cognitive deficits in females, once detected at the mild cognitive impairment stage, tend to deteriorate over time, while males exhibit more diverse decline across various characteristics without highlighting specific ones. However, the underlying reasons for these sex differences remain unknown and warrant further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.