Abstract

The profound impacts of global changes on biodiversity necessitate a more comprehensive documentation, particularly at the microscale level. To achieve precise and rapid insights into this unique diversity, the choice of an ideal species candidate is crucial. Neurospora crassa, a well-established organism in the field of biology, emerges as a promising candidate for this purpose. In our study, we explore the potential of the Carboxypeptidase A1 (CPA1) enzyme as a valuable tool for profiling global diversity. Our investigation has revealed that CPA1 possesses distinctive characteristics, notably its conserved solvent accessibility. This unique feature makes CPA1 an invaluable asset for microscale studies of global changes. The insights presented in our study serve as a practical blueprint, showcasing the application of structural biology in understanding diversity and global changes within microscale environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call