Abstract
Biodiversity changes in terrestrial communities continue in the context of global changes. However, the interactive effects of the changes in diversity at inter- and intraspecific levels as well as cascading effects from plant to soil microorganisms on ecosystem functioning under climate changes remains largely unexplored. Using grassland species in the semi-arid Inner Mongolia Steppe, we conducted a microcosm experiment to assess how drought treatment (non-drought and drought conditions), species diversity (2, 4, and 7 species) and genotypic diversity of the dominant species Leymus chinensis (1, 3, and 6 genotypes) affected ecosystem functions directly or indirectly via regulating plant community functional structure [community-weighted mean (CWM) and functional dispersion (FDis)] and soil microbial diversity (Shannon–Wiener index). Drought treatment, species and genotypic diversity significantly and interactively affected soil N, P cycle and soil multifunctionality as well as soil microbial diversity. Drought treatment significantly affected biomass, soil C cycle, CWM and soil microbial diversity. Species diversity significantly affected soil N cycle, CWM and FDis, and genotypic diversity significantly affected all soil functions and soil microbial diversity. CWM regulated the responses of all ecosystem functions except soil N cycle to the changes in soil moisture and species diversity, which supports the mass ratio hypothesis. The cascading effect from genotypic diversity to soil microbial diversity was significant on belowground biomass but not on any of the other ecosystem functions observed in this study. These findings highlight the importance of genotypic diversity of the dominant species L. chinensis in affecting belowground ecosystem functioning as well as soil microbial diversity, which should not be ignored for grassland protection and management. This study provides further insights into biodiversity and ecosystem functioning mechanisms in semi-arid grasslands in the context of global climate changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.