Abstract
We propose a hybrid machine learning algorithm (i.e.,P2CA−PSO−ANN) to model malaria outbreak in three districts (Barmer, Bikaner, and Jodhpur) of Rajasthan in the Western India. We have used different meteorological variables (i.e., relative humidity, temperature, and rainfall) as input features to predict malaria. We have also considered the combined impact of these variables through a linear data fusion. We then extract the uncorrelated information from the feature set by applying Probabilistic Principal Component Analysis (P2CA). We trained the fully connected feed-forward Artificial Neural Network (ANN) by optimising its hyperparameters iteratively through a bio-inspired optimisation algorithm (Particle Swarm Optimisation). We train and evaluate the performance of this algorithm using monthly meteorological variables from 2009 - 2012. This accurately predicts the malaria cases with the coefficient of correlation (R = 0.99), and Root Mean Square Error (RMSE = 1.76). Finally, we compare our model with different benchmark algorithms (Generalised Regression Neural Network (GRNN), Gaussian Process Regression (GPR), Support Vector Regression (SVR), Random Forest, and Radial Basis Neural Networks (RBNN)) in terms of accuracy. We observed the performance of hybrid machine learning model relatively high. This study can be used as an early warning intelligent system to predict the malaria outbreaks solely from meteorological data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.