Abstract

Metaheuristics can benefit from analyzing patterns and regularities in data to perform more effective searches in the solution space. In line with the emerging trend in the optimization literature, this study introduces the Reinforcement-learning-based Alpha-List Iterated Greedy (RAIG) algorithm to contribute to the advances in machine learning-based optimization, notably for solving combinatorial problems. RAIG uses an N-List mechanism for solution initialization and its solution improvement procedure is enhanced by Reinforcement Learning and an Alpha-List mechanism for more effective searches. A classic engineering optimization problem, the Permutation Flowshop Scheduling Problem (PFSP), is considered for numerical experiments to evaluate RAIG's performance. Highly competitive solutions to the classic scheduling problem are identified, with up to 9% improvement compared to the baseline, when solving large-size instances. Experimental results also show that the RAIG algorithm performs more robustly than the baseline algorithm. Statistical tests confirm that RAIG is superior and hence can be introduced as a strong benchmark for future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.