Abstract

Real-world PLC software is modular and composed of many different function blocks. Nevertheless, common approaches to PLC software verification do not leverage this but resort to inlining, or analyse instances of the same function block type independently. With the advent of constrained Horn clauses as the basis for automated program verification, many state-of-the-art verification procedures build upon them. We illustrate how this formalism allows for a uniform characterisation of PLC program semantics and safety goals, derived from reactive systems safety foundations. Furthermore, we give a natural extension of the resulting encoding which enables compositional reasoning about modular software. Due to the cyclic execution of PLCs, an engineer’s mental model of a single function block often exhibits state machine semantics – partitioning a block’s behaviour into different modes of operation. We illustrate how such a mode space, and similar high-level knowledge, can be integrated with our compositional characterisation. We investigate the impact of each technique on the model checking performance by characterising PLC software verification problems, both in a non-compositional and a compositional way that may incorporate mode transitions, and solving them with an SMT solver. Evaluation of our prototypical implementation on examples from the PLCopen Safety library shows the effectiveness of both the chosen formalism and using high-level summaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call