Abstract
Genome-wide association studies (GWAS) statistically assess the association between tens of millions of genetic variants in the whole genome and a phenotype of interest. Genome-wide association studies enable the elucidation of polygenic inheritance of cancer, in which myriad low-penetrance genetic variants collectively contribute to a substantial proportion of the heritable susceptibility. In addition to the robust genotype-phenotype associations provided by GWAS, combining GWAS data with functional genomic datasets or sophisticated statistical genetic methods unlocks deeper insights. Integrating genotype and molecular phenotyping data facilitates functional characterization of GWAS association signals through molecular quantitative trait loci mapping and transcriptome-wide association studies. Furthermore, aggregating genome-wide polygenic signals, including subthreshold associations, enables one to estimate genetic correlations across diverse phenotypes and helps in clinical risk predictions by evaluating polygenic risk scores. In this review, we begin by summarizing the rationale for GWAS of cancer, introduce recent methodological updates in the GWAS-derived downstream analyses, and demonstrate their applications to GWAS of cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.