Abstract
Global demand for critical raw materials, including phosphorus (P) and rare earth elements (REEs), is on the rise. The south part of Norway, with a particular focus on the Southern Oslo Rift region, is a promising reservoir of Fe-Ti-P-REE resources associated with magmatic systems. Confronting challenges in mineral exploration within these systems, notably the absence of alteration haloes and distal footprints, we have explored alternative methodologies. In this study, we combine machine learning with geological expertise, aiming to identify prospective areas for critical metal prospecting. Our workflow involves processing over 400 rock samples to create training datasets for mineralization and non-mineralization, employing an intuitive sampling strategy to overcome an imbalanced sample ratio. Additionally, we convert airborne magnetic, radiometric, and topographic maps into machine learning-friendly features, with a keen focus on incorporating domain knowledge into these data preparations. Within a binary classification framework, we evaluate two commonly used classifiers: a random forest (RF) and support vector machine (SVM). Our analysis shows that the RF model outperforms the SVM model. The RF model generates a predictive map, identifying approximately 0.3% of the study area as promising for mineralization. These findings align with legacy data and field visits, supporting the map’s potential to guide future surveys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.