Abstract

The prevailing practice advocates pre-oxidation of electrospun Fe-salt/polymer nanofibers (Fe-salt/polymer Nf) before pyrolysis as advantageous in the production of high-performance FeOx@carbon nanofibers supercapacitors (FeOx@C). However, our study systematically challenges this notion by demonstrating that pre-oxidation facilitates the formation of polydispersed and large FeOx nanoparticles (FeOx@CI-DA) through "external" Fe3+ Kirkendall diffusion from carbon, resulting in subpar electrochemical properties. To address this, direct pyrolysis of Fe-salt/polymer Nf is proposed, promoting "internal" Fe3+ Kirkendall diffusion within carbon and providing substantial physical confinement, leading to the formation of monodispersed and small FeOx nanoparticles (FeOx@CDA). In 1 M H2SO4, FeOx@CDA demonstrates ~2.60× and 1.26× faster SO4 2- diffusivity, and electron transfer kinetics, respectively, compared to FeOx@CI-DA, with a correspondingly ~1.50× greater effective surface area. Consequently, FeOx@CDA exhibits a specific capacity of 161.92 mAhg-1, ~2× higher than FeOx@CI-DA, with a rate capability ~19 % greater. Moreover, FeOx@CDA retains 94 % of its capacitance after 5000 GCD cycles, delivering an energy density of 26.68 Whkg-1 in a FeOx@CDA//FeOx@CDA device, rivaling state-of-the-art FeOx/carbon electrodes in less Fe-corrosive electrolytes. However, it is worth noting that the effectiveness of direct pyrolysis is contingent upon hydrated Fe-salt. These findings reveal a straightforward approach to enhancing the supercapacitance of FeOx@C materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.