Abstract

Design automation is undergoing a new generation of changes caused by artificial intelligence technologies represented by deep learning and reinforcement learning. Notably, the advantages of deep reinforcement learning in addressing solution optimisation and decision-making tasks with cognitive automation functionality have garnered attention in design. In the context of surrogate model-driven engineering design optimisation, this paper addresses current research challenges such as reliance on domain knowledge for local development, shortcomings in the self-learning and adaptive capabilities of optimisation algorithms for global exploration, etc. Centred around the deep reinforcement learning model, Deep Q-learning, and complemented by self-organising maps and neural network technologies, we propose a methodology considering multi-fidelity simulation data for design space exploration. This approach effectively reduces sampling costs and enables the optimisation model to learn the optimal direction for high-precision predictions and achieve rapid, accurate optimisation. Finally, the effectiveness of the proposed method is comprehensively validated through four typical optimisation scenarios and a case study involving the optimisation of a wheeled robot's suspension swing arm structure. This work will be a crucial reference for applying deep reinforcement learning in simulation-driven engineering design optimisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call