Abstract

In learning to rank, both the quality and quantity of the training data have significant impacts on the performance of the learned ranking functions. However, in many applications, there are usually not sufficient labeled training data for the construction of an accurate ranking model. It is therefore desirable to leverage existing training data from other tasks when learning the ranking function for a particular task, an important problem which we tackle in this article utilizing a boosting framework with transfer learning . In particular, we propose to adaptively learn transferable representations called super-features from the training data of both the target task and the auxiliary task. Those super-features and the coefficients for combining them are learned in an iterative stage-wise fashion. Unlike previous transfer learning methods, the super-features can be adaptively learned by weak learners from the data. Therefore, the proposed framework is sufficiently flexible to deal with complicated common structures among different learning tasks. We evaluate the performance of the proposed transfer learning method for two datasets from the Letor collection and one dataset collected from a commercial search engine, and we also compare our methods with several existing transfer learning methods. Our results demonstrate that the proposed method can enhance the ranking functions of the target tasks utilizing the training data from the auxiliary tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.