Abstract

Learning ranking (or preference) functions has been a major issue in the machine learning community and has produced many applications in information retrieval. SVMs (Support Vector Machines) - a classification and regression methodology - have also shown excellent performance in learning ranking functions. They effectively learn ranking functions of high generalization based on the large-margin principle and also systematically support nonlinear ranking by the kernel trick. In this paper, we propose an SVM selective sampling technique for learning ranking functions. SVM selective sampling (or active learning with SVM) has been studied in the context of classification. Such techniques reduce the labeling effort in learning classification functions by selecting only the most informative samples to be labeled. However, they are not extendable to learning ranking functions, as the labeled data in ranking is relative ordering, or partial orders of data. Our proposed sampling technique effectively learns an accurate SVM ranking function with fewer partial orders. We apply our sampling technique to the data retrieval application, which enables fuzzy search on relational databases by interacting with users for learning their preferences. Experimental results show a significant reduction of the labeling effort in inducing accurate ranking functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call