Abstract

ABSTRACT Multifield inflation models and non-Bunch–Davies vacuum initial conditions both predict sizeable non-Gaussian primordial perturbations and anisotropic μ-type spectral distortions of the cosmic microwave background (CMB) blackbody. While CMB anisotropies allow us to probe non-Gaussianity at wavenumbers $k\simeq 0.05\, {\rm Mpc^{-1}}$, μ-distortion anisotropies are related to non-Gaussianity of primordial perturbation modes with much larger wavenumbers, $k\simeq 740\, {\rm Mpc^{-1}}$. Through cross-correlations between CMB and μ-distortion anisotropies, one can therefore shed light on the aforementioned inflation models. We investigate the ability of a future CMB satellite imager like LiteBIRD to measure μT and μE cross-power spectra between anisotropic μ-distortions and CMB temperature and E-mode polarization anisotropies in the presence of foregrounds, and derive LiteBIRD forecasts on ${f_{\rm NL}^\mu (k\simeq 740\, {\rm Mpc^{-1}})}$. We show that μE cross-correlations with CMB polarization provide more constraining power on $f_{\rm NL}^\mu$ than μT cross-correlations in the presence of foregrounds, and the joint combination of μT and μE observables adds further leverage to the detection of small-scale primordial non-Gaussianity. For multifield inflation, we find that LiteBIRD would detect ${f_{\rm NL}^\mu }=4500$ at 5σ significance after foreground removal, and achieve a minimum error of ${\sigma (f_{\rm NL}^\mu =0) \simeq 800}$ at 68 per cent CL by combining CMB temperature and polarization. Due to the huge dynamic range of wavenumbers between CMB and μ-distortion anisotropies, such large $f^\mu _{\rm NL}$ values would still be consistent with current CMB constraints in the case of very mild scale dependence of primordial non-Gaussianity. Anisotropic spectral distortions thus provide a new path, complementary to CMB B-modes, to probe inflation with LiteBIRD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.