Abstract

We develop a factor stochastic volatility model that incorporates leverage effects, return asymmetry, and heavy tails across all systematic and idiosyncratic model components. Our model leads to a flexible high-dimensional dependence structure that allows for time-varying correlations, tail dependence, and volatility response to both systematic and idiosyncratic return shocks. We develop an efficient Markov chain Monte Carlo algorithm for posterior estimation based on the particle Gibbs, ancestor sampling, particle efficient importance sampling methods, and interweaving strategy. To obtain parsimonious specifications in practice, we build computationally efficient model selection directly into our estimation algorithm. We validate the performance of our proposed estimation method via simulation studies with different model specifications. An empirical study for a sample of U.S. stocks shows that return asymmetry is a systematic phenomenon and our model outperforms other factor models for value-at-risk evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.