Abstract
Cyclosporine A (CsA) is a potent immunosuppressant effectively used to prevent organ transplant rejection and also to treat several systemic diseases. CsA-induced gingival overgrowth (CsA GO) is the most widely seen side effect of this drug; its pathogenesis is not completely understood. The aim of the present study was to identify the role of leukotriene B4 (LTB4) and platelet activating factor (PAF) in the pathogenesis of CsA GO. LTB4 and PAF levels were detected in gingival crevicular fluid (GCF) samples from renal transplant patients receiving CsA therapy and exhibiting CsA GO, from patients with gingivitis and from periodontally healthy subjects. Plaque index, papilla bleeding index, and hyperplastic index were recorded at each study site. GCF samples and clinical data were obtained from: 2 sites exhibiting CsA GO (CsA GO+) and 2 sites not exhibiting CsA GO (CsA GO-) in each CsA-treated patient; 2 diseased sites in each patient with gingivitis; and 2 healthy sites in each subject with clinically healthy periodontium. LTB4 was extracted from the samples by solid-phase method using C18 cartridge and purified by high-performance liquid chromatographic (HPLC) method and analyzed by radioimmunoassay (RIA). PAF was extracted from GCF samples passing through amberlit resin columns, purified by HPLC, and analyzed by RIA. Total amounts of LTB4 and PAF in GCF were higher in CsA GO+ sites compared to the healthy sites from healthy controls. However, the amount of LTB4 and PAF elevation in CsA GO+ sites was not significantly higher than those in diseased sites. Clinical degrees of gingival inflammation were also similar between CsA GO+ and diseased sites. LTB4 and PAF total amounts in GCF were higher in CsA GO+ sites compared to CsA GO- sites in the same subjects, but this difference just failed to reach significance. Similar findings were obtained with concentration data. The results of this study indicate that CsA therapy does not have a significant effect on GCF LTB4 and PAF levels and that gingival inflammation seems to be the main reason for their elevation. In CsA-treated patients, alterations in LTB4 and PAF levels might play a role in CsA GO through some asyet unknown mechanism. To our knowledge, this is the first report describing the levels of lipid mediators in GCF of CsA-treated patients. We assume that further studies will contribute to the understanding of the pathogenesis of CsA-induced gingival overgrowth.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have