Abstract

The objective was to evaluate the effect of four levels of ground corn supply on nutritional parameters, microbial synthesis efficiency and growing performance of beef heifers, at the rainy season. For such, 28 crossbred yearling heifers, with initial age of 16-17 months and initial weight of 255 ± 31.0 kg were distributed into five paddoks of B. decumbens, of 2.0 ha each, with average potentially digestible DM availability of 2,377.0 kg/ha. For each one of the lots, one of the following supplements was daily supplied: mineral mix exclusively or with ground corn at levels 0.25, 0.50, 0.75 or 1.00 kg/day. The experiment was arranged in completely randomized design with five treatments (supplements), five repetitions for the groups receiving exclusive mineral mix or mineral mix plus corn on the level of 0.50 kg/day and six repetitions for those receiving the other supplements. There was a response of 0.092 kg of weight gain for every 1 kg of ground corn supplied to the animals, and no substitution effect was verified on the dry matter intake of pasture. The increase in ground corn levels increased metabolizable energy intake, which is explained by the crescent linear effect on digestible dry matter intake, on apparent digestibility of dry matter and organic matter as well as on the levels of total digestible nutrients of the diet consistent with the increase in intake of the most digestible ingredient, ground corn. In the same way, there was a positive linear effect for apparent digestibility of neutral detergent fiber. The supplementation provided linear positive effect on the flow of microbial nitrogen compounds (MICN) for the small intestine, and did not affect the microbial synthesis efficiency. The supply of energetic supplement for beef heifers, at pasture, during the rainy season increases the use of the forage and consequently, weight gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.