Abstract

In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model.After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement.It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems.

Highlights

  • Over the years, microwave imaging (MWI) has been employed in various industrial and medical applications

  • We have shown that a considerable contrast between electric field (E-Field) values exists at an approximate location of stroke affected tissues once compared to the normal brain

  • This paper has presented a comparative analysis on the effects of incorporating different levels of detail into human head models on the microwave scattering phenomenon

Read more

Summary

Introduction

Microwave imaging (MWI) has been employed in various industrial and medical applications. The transmitted and reflected signals from the object-of-interest (OI) are measured and processed to construct reliable images of the target. MWI operating principle is based on significant contrast between the dielectric properties of the target and its surroundings (Pastorino, 2010). The Confocal Radar Technique (mono-static, bi-static or multi-static) and the Classical Inverse Scattering are two major approaches followed in active MWI (Jalilvand, Li & Zwick, 2013; Mohammed et al, 2015). The backscattered signals are processed to indicate the location of significant scatterer (target). An inverse scattering approach utilizes the transmitted and backscattered fields’ information for solving an inverse scattering problem to construct shape of the target using spatial distribution of dielectric properties. An emerging diagnostic technique exploiting a Classical Inverse Scattering approach is known as microwave tomography (MWT). MWT relies on the considerable contrast between dielectric properties of the normal and abnormal tissues to indicate the area of disease

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call