Abstract
This article considers external loads experienced on the rotor actuator of the universal continuous earthmoving machinery when digging wide excavations (ditches) in the soil and the ways to improve its productivity. Under the condition of translational and rotational supply of the soil-developing actuator to the face, the possibility of minimizing and leveling external loads on the actuator by improving the kinematics of its cyclic movement in the face has been experimentally proved. The actuator should move according to the required trajectory, which corresponds to the curve of the lemniscate of Bernoulli. The load of the UEM soil-developing actuator, operating in the mode of digging the soil, and the effectiveness of the suggested method for leveling the external loads have been experimentally assessed on the current physical model of the operating equipment. Leveling and reducing the absolute values of loads on the UEM operating equipment is achieved by improving the actuator trajectory optimization when digging the soil. It implies the additional rotation of the actuator intermediate frame at the end of each half cycle of the operating process. The required duration of the additional rotation of the intermediate frame is functionally dependent on the actual speed of machinery movement. The additional rotation of the intermediate frame, the duration of which is 1.1 s in the mode of maximum productivity, reduces the maximum load of the operating equipment, namely: torque on the rotor axis Mt-by 19% (up to 60 kN m), the components of the main force vector: vertical force-by 9% (up to 40 kN), and lateral force Pl.m-by 32% (up to 58 kN). The obtained results enable to comprehensively assess the maximum load of the UEM operating equipment under the conditions of changing values of the factors on which it depends and to objectively assess the directional stability of the machinery. Aligning the thickness of the shavings cut by the buckets of the rotor actuator in a half-cycle enables to improve the productivity of the universal earthmoving machinery almost twice.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have