Abstract
A non-Hermitian operator that is related to its adjoint through a similarity transformation is defined as a pseudo-Hermitian operator. We study the level statistics of a pseudo-Hermitian Dicke Hamiltonian that undergoes quantum phase transition (QPT). We find that the level-spacing distribution of this Hamiltonian near the integrable limit is close to Poisson distribution, while it is Wigner distribution for the ranges of the parameters for which the Hamiltonian is nonintegrable. We show that the assertion in the context of the standard Dicke model that QPT is a precursor to a change in the level statistics is not valid in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.