Abstract

Latency of pupillary responses to light stimuli are smaller for larger steps of light, and larger for smaller steps of light (Alpern 1954; Lowenstein et al. 1964; Lee et al. 1969; Terdiman et al. 1969; Cibis et al. 1977; and many others). Miller and Thompson (1978), however, reported negligible change in pupil cycle time (period of high gain instability oscillations) with increased mean brightness. Sandberg and Stark (1968) reported a negligible reduction in phase lag of pupillary responses to sinusoidal light stimuli as the modulation coefficient (m) increased. To resolve the inconsistency between the well-documented dependence of latency upon brightness, and the apparent absence of level dependence in the phase characteristics (as reflected directly in the responses to sinusoidal stimuli and indirectly in pupil cycle time experiments) we measured: 1. Latency to step stimuli of light, 2. Phase of responses to sinusoidal light stimuli and 3. Period (pupil cycle time) of high gain instability oscillations. The dependence of pupillary latency upon stimulus level (both light and accommodation) and the interaction between accommodation and light responses were investigated. We show that most of the level dependence of light-pupil latency resides in the afferent path. In the companion papers, we demonstrate that: 1. Phase of pupillary response to sinusoidal light stimuli is reduced by increased mean light level, but is independent of pupil size and accommodative stimulus level; and 2. The period of high gain oscillations is shown to decrease with increased mean light level.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call