Abstract
Accurate knowledge of the nuclear level density is important both from a theoretical viewpoint as a powerful instrument for studying nuclear structure and for numerous applications. For example, astrophysical reactions responsible for the nucleosynthesis in the universe can be understood only if we know the nuclear level density. We use the configuration-interaction nuclear shell model to predict nuclear level density for all nuclei in the sd-shell, both total and for individual spins (only with positive parity). To avoid the diagonalization in large model spaces we use the moments method based on statistical properties of nuclear many-body systems. In the cases where the diagonalization is possible, the results of the moments method practically coincide with those from the shell-model calculations. Using the computed level densities, we fit the parameters of the Constant Temperature phenomenological model, which can be used by practitioners in their studies of nuclear reactions at excitation energies appropriate for the sd-shell nuclei.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.