Abstract

The double-beta (2β)-decay is the rarest nuclear physics process, and its experimental half-lives (T1/2) exceed the age of the Universe from nine to fourteen orders of magnitude. Double-beta decay was observed, and its half-life was measured in 14 parent nuclei using direct, radiochemical, and geochemical methods. The decay observables are analyzed using the Evaluated Nuclear Structure Data File (ENSDF) procedures, and the recommended T1/2 were deduced. Using the calculated values of phase factors, the effective nuclear matrix elements were extracted and compared with available data. Thousands of theoretical and experimental works have been dedicated to these topics in the last 85 years, and we present two data sets of recommended values to encapsulate the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.