Abstract
BackgroundLeukocyte telomere length (LTL) is a putative biological marker of immune system age, and there are demonstrated associations between LTL and cardiovascular disease. This may be due in part to the relationship of LTL with other biomarkers associated with cardiovascular disease risk. However, the strength of associations between LTL and adiposity, metabolic, proinflammatory, and cardiovascular biomarkers has not been systematically evaluated in a United States nationally representative population.Methods and FindingsWe examined associations between LTL and 17 cardiovascular biomarkers, including lipoproteins, blood sugar, circulatory pressure, proinflammatory markers, kidney function, and adiposity measures, in adults ages 20 to 84 from the cross-sectional US nationally representative 1999–2002 National Health and Nutrition Examination Survey (NHANES) (n = 7,252), statistically adjusting for immune cell type distributions. We also examine whether these associations differed systematically by age, race/ethnicity, gender, education, and income. We found that a one unit difference in the following biomarkers were associated with kilobase pair differences in LTL: BMI -0.00478 (95% CI -0.00749–-0.00206), waist circumference -0.00211 (95% CI -0.00325–-0.000969), percentage of body fat -0.00516 (95% CI -0.00761–-0.0027), high density lipoprotein (HDL) cholesterol 0.00179 (95% CI 0.000571–0.00301), triglycerides -0.000285 (95% CI -0.000555–-0.0000158), pulse rate -0.00194 (95% CI -0.00317–-0.000705), C-reactive protein -0.0363 (95% CI 0.0601–-0.0124), cystatin C -0.0391 (95% CI -0.0772–-0.00107). When using clinical cut-points we additionally found associations between LTL and insulin resistance -0.0412 (95% CI -0.0685–-0.0139), systolic blood pressure 0.0455 (95% CI 0.00137–0.0897), and diastolic blood pressure -0.0674 (95% CI -0.126–-0.00889). These associations were 10%–15% greater without controlling for leukocyte cell types. There were very few differences in the associations by age, race/ethnicity, gender, education, or income. Our findings are relevant to the relationships between these cardiovascular biomarkers in the general population but not to cardiovascular disease as a clinical outcome.ConclusionsLTL is most strongly associated with adiposity, but is also associated with biomarkers across several physiological systems. LTL may thus be a predictor of cardiovascular disease through its association with multiple risk factors that are physiologically correlated with risk for development of cardiovascular disease. Our results are consistent with LTL being a biomarker of cardiovascular aging through established physiological mechanisms.
Highlights
Shorter leukocyte telomere length (LTL) is significantly associated with increased risk of cardiovascular disease, irrespective of adjustment for conventional risk factors [1]
We examined associations between Leukocyte telomere length (LTL) and 17 cardiovascular biomarkers, including lipoproteins, blood sugar, circulatory pressure, proinflammatory markers, kidney function, and adiposity measures, in adults ages 20 to 84 from the cross-sectional US nationally representative 1999–2002 National Health and Nutrition Examination Survey (NHANES) (n = 7,252), statistically adjusting for immune cell type distributions
We found that a one unit difference in the following biomarkers were associated with kilobase pair differences in LTL: BMI -0.00478, waist circumference -0.00211, percentage of body fat -0.00516, high density lipoprotein (HDL) cholesterol 0.00179, triglycerides -0.000285, pulse rate -0.00194, C-reactive protein -0.0363, cystatin C -0.0391
Summary
Shorter leukocyte telomere length (LTL) is significantly associated with increased risk of cardiovascular disease, irrespective of adjustment for conventional risk factors [1]. A meta-analysis of 24 studies with 43,725 participants and 8,400 patients with cardiovascular disease estimated a relative risk of 1.54 (95% CI 1.30–1.83), comparing those with the longest to shortest third of LTL [1] These finding are consistent with a role for LTL in cardiovascular disease etiology, the critical details of how LTL is related to known metabolic pro-inflammatory markers and cardiovascular risk factors in the pathway to cardiovascular disease are unclear [2]. Examining the relationship of telomere length with multiple biomarkers concurrently will inform us of whether LTL might be a marker for one primary risk factor, such as inflammation, or of multiple risk factors This analysis will help to better understand whether LTL represents a unique biomarker that is independent from other known risk factors for cardiovascular disease. The strength of associations between LTL and adiposity, metabolic, proinflammatory, and cardiovascular biomarkers has not been systematically evaluated in a United States nationally representative population
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have