Abstract

Activating ligands of gp130, including leukemia inhibitory factor (LIF), can block differentiation and function of retinal neurons. This study focused on determining whether LIF inhibits differentiation of photoreceptors by altering cell fate or by blocking the expression of essential transcription factors in vivo. Transgenic mice were generated that had lens-specific expression of the secreted human LIF protein. Retinal differentiation was assessed by histology and by gene expression analysis, with in situ hybridization, immunohistochemistry, and real-time qRT-PCR. Electroretinograms were used to assess retinal function. LIF did not prevent or alter the timing of outer and inner nuclear layer separation, but it inhibited phototransduction gene expression in both rods and cones, thereby blocking functional maturation of photoreceptors. LIF also reduced the expression of Crx, Nrl, and Nr2e3, and upregulated the expression of transcription inhibitors Baf and Fiz1. LIF expression did not appear to alter photoreceptor cell fate specification, but it inhibited subsequent differentiation. These results suggest that gp130 ligands can inhibit photoreceptor functional differentiation by reducing Crx- and Nrl-dependent transcription.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call