Abstract

Cellulose nanocrystals are hydrophilic nanomaterials, which limits their applications as interfacial compounds. Herein, we propose using modified wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Wood cellulose was consecutively oxidized and modified with phenyltrimethylammonium chloride to create hydrophobic domains comprised of phenyl groups. These modified oxidized cellulose nanocrystals (m-O-CNCs) were homogeneous/electrostatically stable in water and they can stabilize O/W Pickering emulsions. The dispersed phase volume fraction (DPVF) of the Pickering emulsion was 0.7 at around 1.5 g/L, whereas the tween-20 control needed a 13-fold greater concentration to have a similar DPVR. In addition, these m-O-CNC stabilized Pickering emulsions also showed good mechanical and thermal stability against centrifugation and heat, as well as size controllability. In terms of stability, size controllability, surfactant-free status, these m-O-CNCs possess superior and enhanced emulsifying properties. Future research for these new interfacial materials have potential in applications, for personal care, cosmetic and pharmaceutic industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.