Abstract

CO(2) leakages during carbon capture and storage in sub-seabed geological structures could produce potential impacts on the marine environment. To study lethal effects on marine organisms attributable to CO(2) seawater acidification, a bubbling CO(2) system was designed enabling a battery of different tests to be conducted, under laboratory conditions, employing various pH treatments (8.0, 7.5, 7.0, 6.5, 6.0, and 5.5). Assays were performed of three exposure routes (seawater, whole sediment, and sediment elutriate). Individuals of the clam (Ruditapes philippinarum) and early-life stages of the gilthead seabream, Sparus aurata, were exposed for 10days and 72h, respectively, to acidified clean seawater. S. aurata larvae were also exposed to acidified elutriate samples, and polychaete organisms of the specie Hediste diversicolor and clams R. philippinarum were also exposed for 10days to estuarine whole sediment. In the fish larvae elutriate test, 100% mortality was recorded at pH6.0, after 48h of exposure. Similar results were obtained in the clam sediment exposure test. In the other organisms, significant mortality (p < 0.05) was observed at pH values lower than 6.0. Very high lethal effects (calculating L[H(+)]50, defined as the H(+) concentration that causes lethal effects in 50% of the population exposed) were detected in association with the lowest pH treatment for all the species. The implication of these results is that a severe decrease of seawater pH would cause high mortality in marine organisms of several different kinds and life stages. The study addresses the potential risks incurred due to CO(2) leakages in marine environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call