Abstract
Successful aircraft predictive maintenance relies on the accurate prediction of major aircraft component failures for operators to schedule and carry out maintenance operations before failure actually happens. In this paper, we share important lessons learned from our development of prognostics alerts using full flight sensor data, including various challenges of using big data, data quality issues, failure identification for data labeling, engineering-driven vs. data-driven methods, and aggregating alerts into actionable alerts. We also provide recommendations based on our experience with prognostic alerts developed and deployed for many airline operators.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have