Abstract

Metazoans require highly diverse collections of cell types to sense, interpret, and react to the environment. Developmental programs incorporate deterministic and stochastic strategies in different contexts or different combinations to establish this multitude of cell fates. Precise genetic dissection of the processes controlling terminal photoreceptor differentiation in the Drosophila retina has revealed complex regulatory mechanisms required to generate differences in gene expression and cell fate. In this review, I discuss how a gene regulatory network interprets stochastic and regional inputs to determine the specification of color-detecting photoreceptor subtypes in the Drosophila retina. These combinatorial gene regulatory mechanisms will likely be broadly applicable to nervous system development and cell fate specification in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.